aiohttp-demos Documentation
Release 0.2

contributors

Sep 21, 2023

Contents

1 Example Projects 3
2 Contents 5
2.1 PreparationS e 5
2.2 Getting started L L e e e e e e e e e e e e e e e 7
23 0 VIBWS . . o o e e e 8
24 Configuration files e 9
2.5 Database e e e e e e 10
2.6 Doing things at startup and shutdown L 13
2.7 Templates e e e e e e e e e e e e e e e e e e 15
2.8 Staticfiles e e e 17
29 Middlewares e e e 17

aiohttp-demos Documentation, Release 0.2

If you want to create an application with aiohttp there is a step-by-step guide for Polls application (Getting started).
The application is similar to the one from Django tutorial. It allows people to create polls and vote.

There are also many other demo projects, give them a try!

Contents 1

aiohttp-demos Documentation, Release 0.2

2 Contents

CHAPTER 1

Example Projects

We have created for you a selection of fun projects, that can show you how to create application from the blog to the
applications related to data science. Please feel free to add your open source example project by making Pull Request.

e Shortify - URL shortener with Redis storage.
* Moderator - UI and API for classification of offensive and toxic comments using Kaggle data and scikit-learn.

* Moderator bot - Slack bot for moderating offensive and toxic comments using provided model from Moderator
Al

* Motortwit - Twitter clone with MongoDB storage.

» Imagetagger - Example how to deploy deep learning model with aiohttp.

e Chat - Simple chat using websockets.

* Polls - Simple polls application with PostgreSQL storage.

* Blog - The blog application with PostgreSQL storage and Redis session store.

* Graphql - The simple real-time chat that based on the GraphQL api and Apollo client.

https://github.com/aio-libs/aiohttp-demos/tree/master/demos/shortify
https://github.com/aio-libs/aiohttp-demos/tree/master/demos/moderator
https://github.com/aio-libs/aiohttp-demos/tree/master/demos/moderator_bot
https://github.com/aio-libs/aiohttp-demos/tree/master/demos/motortwit
https://github.com/aio-libs/aiohttp-demos/tree/master/demos/imagetagger
https://github.com/aio-libs/aiohttp-demos/tree/master/demos/chat
https://github.com/aio-libs/aiohttp-demos/tree/master/demos/polls
https://github.com/aio-libs/aiohttp-demos/tree/master/demos/blog
https://github.com/aio-libs/aiohttp-demos/tree/master/demos/graphql-demo

aiohttp-demos Documentation, Release 0.2

4 Chapter 1. Example Projects

CHAPTER 2

Contents

2.1 Preparations

Start with an empty folder and create files alongside with the tutorial. If you want the full source code in advance or
for comparison, check out the demo source.

2.1.1 Project structure

At the end of the tutorial, this project’s structure should look very similar to other Python based web projects:

—— aiohttpdemo_polls

static
— images

L background.png
-— style.css
templates
— 404 .html
— 500.html
— base.html
—— detail.html
— index.html
— results.html

db.py
__init__ .py
__main__ .py
main.py

middlewares.py
routes.py
settings.py
utils.py
views.py

— config

(continues on next page)

https://github.com/aio-libs/aiohttp-demos/tree/master/demos/polls/

aiohttp-demos Documentation, Release 0.2

(continued from previous page)

polls_test.yaml
polls.yaml
— tests

conftest.py
__init___.py
test_integration.py

— init_db.py

— Makefile

—— README.rst

— regquirements.txt
— setup.py

— tox.ini

2.1.2 Environment

We suggest you to create an isolated Python virtual environment:

$ python3 -m venv env
$ source env/bin/activate

During the tutorial, you will be instructed to install some packages inside this activated environment. For example,
youwilluse $ pip install aiopg to install aiopg before doing the database related sections.

Note: If you decided to run the application from the repo’s source code, install the app and its requirements:

$ cd demos/polls
$ pip install -e

Check your Python version (tutorial requires Python 3.5 or newer):

$ python -V
Python 3.7.3

Install aiohttp

$ pip install aiohttp

Check the aiohttp version:

$ python3 -c 'import aiohttp; print (aiohttp.__version__)"
3.5.4

2.1.3 Database

Running server
We could have created this tutorial based on a local sglite solution, but sgqlite is almost never used in real-world
applications. To better reflect a production example, we decided to use Postgres for the tutorial.

Install and run the PostgreSQL database server: http://www.postgresql.org/download/. To use PostgreSQL in a more
isolated way, you may use Docker as an alternative:

6 Chapter 2. Contents

http://www.postgresql.org/download/

aiohttp-demos Documentation, Release 0.2

$ docker run —--rm -it -p 5432:5432 postgres:10

Initial setup
We need to create a running database and a user with write access. For these and other database related actions,
consider one of the following options:

 prepare manually using the database’s interactive prompt

* prepare and execute . sql files

* use migration tool

¢ use default database/user postgres

Whichever option you choose, make sure you remember the corresponding values to put them into a config file. Here
are example commands to run manually

psgl -U postgres —-h localhost

CREATE DATABASE aiohttpdemo_polls;

CREATE USER aiohttpdemo_user WITH PASSWORD 'aiohttpdemo_pass';

GRANT ALL PRIVILEGES ON DATABASE aiohttpdemo_polls TO aiohttpdemo_user;

vV V. V »n

Use the psql commands, \1 and \du, to check results.

Note: If you decided to run the application from the repo’s source code, this script (init_db.py) will create a
database and running server, as well as create tables and populate them with sample data

’$ python init_db.py

2.2 Getting started

Let’s start with basic folder structure:
* project folder named pol1ls. A root of the project. Run all commands from here.
* application folder named aiohttpdemo_polls inside of it
e empty file main.py. The place where web server will live
We need this nested aiohttpdemo_polls so we can put config, tests and other related files next to it.

It looks like this:

polls <-— [current folder]
— aiohttpdemo_polls
L main.py

aiohttp server is built around aiohttp.web.Application instance. It is used for registering startup/cleanup
signals, connecting routes etc.

The following code creates an application:

2.2. Getting started 7

https://docs.aiohttp.org/en/stable/web_reference.html#aiohttp.web.Application

aiohttp-demos Documentation, Release 0.2

aiohttpdemo_polls/main.py
from aiohttp import web

app = web.Application()
web.run_app (app)

Save it and start server by running:

$ python aiohttpdemo_polls/main.py
======== Running on http://0.0.0.0:8080 ========
(Press CTRL+C to quit)

Next, open the displayed link in a browser. It returns a 404: Not Found error. To show something more mean-
ingful than an error, let’s create a route and a view.

2.3 Views

Let’s start with the first views. Create the file aiohttpdemo_polls/views.py and add the following to it:

aiohttpdemo_polls/views.py
from aiohttp import web

async def index(request):
return web.Response (text="'Hello Aiohttp!")

This index view is the simplest view possible in Aiohttp.

Now, we should create a route for this index view. Put the following into aiohttpdemo_polls/routes.py.
It is a good practice to separate views, routes, models etc. You’ll have more of each file type, and it is nice to group
them into different places:

aiohttpdemo_polls/routes.py
from views import index

def setup_routes (app) :
app.router.add_get ('/', index)

We should add a call to the setup_routes function somewhere. The best place to do this is in main.py:

aiohttpdemo_polls/main.py
from aiohttp import web
from routes import setup_routes

app = web.Application()
setup_routes (app)
web.run_app (app)

Start server again using python aiohttpdemo_polls/main.py. Thistime when we open the browser we see:

’Hello Aiohttp!

Success! Now, your working directory should look like this:

o

(continues on next page)

8 Chapter 2. Contents

aiohttp-demos Documentation, Release 0.2

(continued from previous page)

L polls
L aiohttpdemo_polls

main.py
routes.py
views.py

2.4 Configuration files

Note: aiohttp is configuration agnostic. It means the library does not require any specific configuration approach, and
it does not have built-in support for any config schema.

Please note these facts:
1. 99% of servers have configuration files.
2. Most products (except Python-based solutions like Django and Flask) do not store configs with source code.
For example Nginx has its own configuration files stored by default under /et c/nginx folder.
MongoDB stores its config as /et c/mongodb. conf.
3. Config file validation is a good idea. Strong checks may prevent unnecessary errors during product deployment.
Thus, we suggest to use the following approach:
1. Push configs as yaml files (json or ini is also good but yaml is preferred).

2. Load yaml config from a list of predefined locations, e.g. . /config/app_cfg.yaml, /etc/app_cfg.
yaml.

3. Keep the ability to override a config file by a command line parameter, e.g. . /run_app —--config=/opt/
config/app_cfg.yaml.

4. Apply strict validation checks to loaded dict. trafaret, colander or JSON schema are good candidates for such
job.

One way to store your config is in folder at the same level as aiohttpdemo_polls. Create a config folder and config
file at desired location. E.g.:

I: polls <-— [BASE_DIR]
aiohttpdemo_polls
main.py
routes.py
views.py

config
L— polls.yaml <—— [config file]

Create a config/polls.yaml file with meaningful option names:

config/polls.yaml
postgres:
database: aiohttpdemo_polls

(continues on next page)

2.4. Configuration files 9

http://trafaret.readthedocs.io/en/latest/
http://docs.pylonsproject.org/projects/colander/en/latest/
http://python-jsonschema.readthedocs.io/en/latest/

aiohttp-demos Documentation, Release 0.2

(continued from previous page)

user: aiohttpdemo_user
password: aiohttpdemo_pass
host: localhost

port: 5432

minsize: 1

maxsize: 5

Install pyyaml package:

$ pip install pyyaml

Let’s also create a separate settings.py file. It helps to leave main.py clean and short:

aiohttpdemo_polls/settings.py
import pathlib
import yaml

BASE_DIR = pathlib.Path(file) .parent.parent
config_path = BASE_DIR / 'config' / 'polls.yaml'

def get_config(path):
with open(path) as f:
config = yaml.safe_load(f)
return config

config = get_config(config_path)

Next, load the config into the application:

aiohttpdemo_polls/main.py
from aiohttp import web

from settings import config
from routes import setup_routes

app = web.Application()
setup_routes (app)
app['config'] = config
web.run_app (app)

Now, try to run your app again. Make sure you are running it from BASE_DIR:

$ python aiohttpdemo_polls/main.py
======== Running on http://0.0.0.0:8080 ========
(Press CTRL+C to quit)

For the moment nothing should have changed in application’s behavior. But at least we know how to configure our
application.

2.5 Database

2.5.1 Server

Here, we assume that you have running database and a user with write access. Refer to Darabase for details.

10 Chapter 2. Contents

aiohttp-demos Documentation, Release 0.2

2.5.2 Schema

We will use SQLAlchemy to describe database schema for two related models, question and choice:

fom e — + fom e —— +
| question | | choice |
t===============+ t===============+
| id | <———+ | id |
fom + \ o +
| question_text | | | choice_text
fom + \ o +
| pub_date | | | votes |
o + \ o +
o question_id
e +

Create db . py file with database schemas:

aiohttpdemo_polls/db.py

from sglalchemy import (
MetaData, Table, Column, ForeignKey,
Integer, String, Date

meta = MetaData ()

question = Table(
'question', meta,

Column ('id', Integer, primary_key=True),
Column ('question_text', String(200), nullable=False),
Column ('pub_date', Date, nullable=False)

choice = Table(
'choice', meta,

Column ('id', Integer, primary_key=True),
Column ('choice_text', String(200), nullable=False),
Column ('votes', Integer, server_default="0", nullable=False),

Column ('question_id",
Integer,
ForeignKey ('question.id', ondelete='CASCADE'))

Note: It is possible to configure tables in a declarative style like so:

class Question (Base) :
__tablename___ = 'question'

id = Column (Integer, primary_key=True)
question_text = Column (String(200), nullable=False)
pub_date = Column (Date, nullable=False)

But it doesn’t give much benefits later on. SQLAIchemy ORM doesn’t work in asynchronous style
and as a result aiopg.sa doesn’t support related ORM expressions such as Question.query.

2.5. Database 11

aiohttp-demos Documentation, Release 0.2

filter by (question_text='Why').first () orsession.query (TableName) .all().

You still can make select queries after some code modifications:

from sglalchemy.sqgl import select

result = await conn.execute (select ([Question]))
instead of
result = await conn.execute (question.select())

But it is not as easy to deal with as update/delete queries.

Now we need to create tables in database as it was described with sqlalchemy. Helper script can do that for you. Create
anew file init_db.py in project’s root:

polls/init_db.py
from sglalchemy import create_engine, MetaData

from aiohttpdemo_polls.settings import config
from aiohttpdemo _polls.db import question, choice

DSN = "postgresql://{user}: {password}Q@{host}: {port}/{database}"

def create_tables (engine):
meta = MetaData ()
meta.create_all (bind=engine, tables=[question, choice])

def sample_data (engine) :
conn = engine.connect ()
conn.execute (question.insert (), [
{'question_text': 'What\'s new?',
'pub_date': '2015-12-15 17:17:49.629+02"}
1)

conn.execute (choice.insert (), [

{'choice_text': 'Not much', 'votes': 0, 'question_id': 1},
{'choice_text': 'The sky', 'votes': 0, 'question_id': 1},
{'choice_text': 'Just hacking again', 'votes': 0, 'question_id': 1},

1)

conn.close ()

if _ name_ == '_ main_ ':
db_url DSN. format (x+xconfig['postgres'])

engine = create_engine (db_url)

create_tables (engine)
sample_data (engine)

Note: A more advanced version of this script is mentioned in Database notes.

Install the aiopg[sa] package (it will pull sglalchemy alongside) to interact with the database, and run the
script:

12 Chapter 2. Contents

aiohttp-demos Documentation, Release 0.2

$ pip install aiopgl[sal
$ python init_db.py

Note: At this point we are not using any async features of the package. For this reason, you could have installed
psycopg?2 package. Though since we are using sqlalchemy, we also could switch the type of database server.

Now there should be one record for question with related choice options stored in corresponding tables in the database.

Use psqgl, pgAdmin or any other tool you like to check database contents:

$ psgl -U postgres —-h localhost -p 5432 -d aiohttpdemo_polls
aiohttpdemo_polls=# select x from question;
id | question_text | pub_date
____+ _______________ + ____________
1 | What's new? | 2015-12-15
(1 row)

2.6 Doing things at startup and shutdown

Sometimes it is necessary to configure some component’s setup and tear down. For a database this would be the
creation of a connection or connection pool and closing it afterwards.

Pieces of code below belong to aiohttpdemo_polls/db.py and aiohttpdemo_polls/main.py files.
Complete files will be shown shortly after.

2.6.1 Creating connection engine

For making DB queries we need an engine instance. Assuming conf is a dict with the configuration info for a
Postgres connection, this could be done by the following async generator function:

async def pg_context (app) :

conf = appl['config']['postgres']

engine = await aiopg.sa.create_engine (
database=conf['database'],
user=conf['user'],
password=conf ['password'],
host=conf['host'],
port=conf['port'],
minsize=conf['minsize'],
maxsize=conf['maxsize'],

)

appl['db'] = engine

yield

appl['db'].close ()
await app['db'].wait_closed()

Add the code to aiohttpdemo_polls/db.py file.

The best place for connecting to the DB is using the cleanup_ctx signal:

2.6. Doing things at startup and shutdown 13

https://docs.python.org/3/library/stdtypes.html#dict

aiohttp-demos Documentation, Release 0.2

app.cleanup_ctx.append (pg_context)

On startup, the code is run until the yield. When the application is shutdown the code will resume and close the DB
connection.

Note: We could also have used separate startup/shutdown functions with the on_startup and on_cleanup
signals. However, a cleanup context ties the 2 parts together so that the DB can be correctly shutdown even if an error
occurs in another startup step.

2.6.2 Complete files with changes

aiohttpdemo_polls/db.py

import aiopg.sa

from sglalchemy import (
MetaData, Table, Column, ForeignKey,
Integer, String, Date

all = ['question', 'choice']

meta = MetaData ()

question = Table(
'question', meta,

Column ('id', Integer, primary_key=True),
Column ('question_text', String(200), nullable=False),
Column ('pub_date', Date, nullable=False)

choice = Table(
'choice', meta,

Column ('id', Integer, primary_key=True),
Column ('choice_text', String(200), nullable=False),
Column ('votes', Integer, server_default="0", nullable=False),

Column ('question_id",
Integer,
ForeignKey ('question.id', ondelete='CASCADE'))

async def pg_context (app) :

conf = appl['config']['postgres']

engine = await aiopg.sa.create_engine (
database=conf ['database'],
user=conf['user'],
password=conf['password'],
host=conf(['host'],
port=conf['port'],
minsize=conf['minsize'],
maxsize=conf['maxsize'],

(continues on next page)

14 Chapter 2. Contents

aiohttp-demos Documentation, Release 0.2

(continued from previous page)

appl['db'] = engine
yield

appl['db'].close ()
await app(['db'].wait_closed()

aiohttpdemo_polls/main.py
from aiohttp import web

from settings import config
from routes import setup_routes
from db import pg_context

app = web.Application()
appl'config'] = config
setup_routes (app)
app.cleanup_ctx.append (pg_context)
web.run_app (app)

Since we now have database connection on start - let’s use it! Modify index view:

aiohttpdemo_polls/views.py
from aiohttp import web
import db

async def index(request):
async with request.app['db'].acquire() as conn:
cursor = await conn.execute(db.question.select ())
records = await cursor.fetchall ()
questions = [dict (g) for g in records]
return web.Response (text=str (questions))

Run server and you should get list of available questions (one record at the moment) with all fields.

2.7 Templates

For setting up the template engine, we install the aiohttp_jinja2 library first:

’$ pip install aiohttp_jinja2

After installing, setup the library:

aiohttpdemo_polls/main.py

from aiohttp import web

import aiohttp_jinja2

import jinja2

from settings import config, BASE_DIR
from routes import setup_routes

from db import pg_context

app = web.Application ()

(continues on next page)

2.7. Templates 15

aiohttp-demos Documentation, Release 0.2

(continued from previous page)

appl'config'] = config
aiohttp_jinja2.setup (app,
loader=jinja2.FileSystemLoader (str (BASE_DIR / 'aiohttpdemo_polls' / 'templates')))
setup_routes (app)
app.cleanup_ctx.append (pg_context)
web.run_app (app)

As you can see from setup above - templates should be placed at aiohttpdemo_polls/templates folder.

Let’s create simple template and modify index view to use it:

<!--aiohttpdemo_polls/templates/index.html-->
{% set title = "Main" %}

-~
oo

if questions %}

% for question in questions 3%}
{{ question.question_text }}</1li>
{% endfor 3}

else 3%}
<p>No questions are available.</p>
endif 3%}

-~
oo

~
oo

Templates are a very convenient way for web page writing. If we return a dict with page content, the
aiohttp_jinja2.template decorator processes the dict using the jinja2 template renderer.

aiohttpdemo_polls/views.py
import aiohttp_jinja2
import db

@aiohttp_jinja2.template ('index.html')
async def index(request):
async with request.app['db'].acquire() as conn:
cursor = await conn.execute(db.question.select ())

records = await cursor.fetchall ()
questions = [dict (g) for g in records]
return {"questions": questions}

Run the server and you should see a question decorated in html list element.

Let’s add more views:

Qaiohttp_jinja2.template('detail.html")
async def poll (request):
async with request.app['db'].acquire() as conn:
question_id = request.match_info['question_id']
try:
question, choices = await db.get_qguestion (conn,
question_id)
except db.RecordNotFound as e:
raise web.HTTPNotFound (text=str(e))

return {
'question': question,
'choices': choices

16 Chapter 2. Contents

aiohttp-demos Documentation, Release 0.2

2.8 Static files

Any web site has static files such as: images, JavaScript sources, CSS files
The best way to handle static files in production is by setting up a reverse proxy like NGINX or using CDN services.
During development, handling static files using the aiohttp server is very convenient.

Fortunately, this can be done easily by a single call:

def setup_static_routes (app) :
app.router.add_static('/static/',
path=PROJECT_ROOT / 'static',
name="static')

where project_root is the path to the root folder.

2.9 Middlewares

Middlewares are stacked around every web-handler. They are called before the handler for a pre-processing request.
After getting a response back, they are used for post-processing the given response.

A common use of middlewares is to implement custom error pages. Example from Middlewares documentation will
render 404 errors using a JSON response, as might be appropriate for a REST service.

Here we’ll create a little bit more complex middleware custom display pages for 404 Not Found and 500 Internal
Error.

Every middleware should accept two parameters, a request and a handler, and return the response. Middleware itself
is a coroutine that can modify either request or response:

Now, create a new middlewares.py file:

middlewares.py
import aiohttp_jinja2
from aiohttp import web

async def handle_404 (request) :
return aiohttp_jinja2.render_template('404.html', request, {}, status=404)

async def handle_500 (request) :
return aiohttp_jinja2.render_template('500.html"', request, {}, status=500)

def create_error_middleware (overrides) :

@web.middleware
async def error_middleware (request, handler):
try:
return await handler (request)
except web.HTTPException as ex:
override = overrides.get (ex.status)
if override:
return await override (request)

(continues on next page)

2.8. Static files 17

https://docs.aiohttp.org/en/stable/web_advanced.html#aiohttp-web-middlewares

aiohttp-demos Documentation, Release 0.2

(continued from previous page)

raise

except Exception:
request.protocol.logger.exception ("Error handling request")
return await overrides[500] (request)

return error_middleware

def setup_middlewares (app) :
error_middleware = create_error_middleware ({
404: handle_404,
500: handle_500
1)

app.middlewares.append(error_middleware)

As you can see, we do nothing before the web handler. In the case of an HTTPException, we use the Jinja2 template
renderer based on ex . status affer the request was handled. For other exceptions, we log the error and render our
500 template. Without the create_error_middleware function, the same task would take us many more if
statements.

We have registered middleware in app by adding it to app .middlewares.

Now, add a setup_middlewares step to the main file:

aiohttpdemo_polls/main.py
from aiohttp import web

from settings import config
from routes import setup_routes
from middlewares import setup_middlewares

app = web.Application()
setup_routes (app)
setup_middlewares (app)
appl'config'] = config
web.run_app (app)

Run the app again. To test, try an invalid url.

18 Chapter 2. Contents

	Example Projects
	Contents
	Preparations
	Getting started
	Views
	Configuration files
	Database
	Doing things at startup and shutdown
	Templates
	Static files
	Middlewares

